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Abstract: - The initial-value problem for the ODE is one of the classical mathematical problems, which was 
fundamentally investigated by many authors. This problem has been basically studied by using the quadrature 
formulas. Note that in the construction of quadrature formulas are used interpolation polynomials with different 
properties. Here, has been established some connection between the ODE and definite integrals, by using of 
which have constructed effective methods for computing of definite integrals. By using some multistep 
methods have demonstrated the advantage of the multistep methods. And also demonstrated the advantages of 
the proposed here methods in the construction of which didn’t use the theory of interpolation polynomials. 
Quadrature methods are studied as the special case of the multistep methods. And also have determined the 
maximal order of the quadrature method. Here received the apriori estimation for the errors of quadrature 
methods. Proposed concrete methods some of which have applied to the computing of the model definite 
integral. 
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1 Introduction 
One of the popular methods in studying of scientific 
and engineering problems is the quadrature methods 
which is directly related with the application of 
definite integrals. As is known many authors in 
solving of the initial-value problem for ODE have 
used the quadrature formula. For this aim, let us 
consider the following problem: 

0 0 0( , ), ( ) , .y f x y y x y x x X       (1) 

This is an initial-value problem for the ODE of the 
first order, which can be written as the integral 
equation in the following form:  

0

0 0( ) ( ) ( , ( )) , .
x

x

y x y x f s y s ds x x X     (2) 

Suppose that the continuous on the totality of 
arguments function ( , )f x y is defined on the 

domain 0{ , }D x x X y C     and has the 

partial derivatives up to p , inclusively. It follows 
that the problem (1) has the unique solution defined 
on the segment 0[ , ]x X . As is known the problem 

(1) has been investigated by many authors (see [1], 
[2, p. 292-293], [3], [4, p. 83-109], [5]-[10]). 
Constructed one-step and multistep methods for 
solving of the problem (1). Taking into account the 

equivalency of the problem (1) and the integral 
equation (2) have been constructed the methods for 
solving of problem (2). To construct the methods 
with the higher order of accuracy, here proposed to 
use the finite-difference methods. And now let us 
consider the application of the quadrature formula to 
solving of the problem (1).   
 

2 Investigation of quadrature 
formula by using the numerical 
solution of the problem (1) 
 
The investigation of numerical solutions of the 
problem (1) by using the quadrature methods has 
been studied by scientists a very long time. But here 
proposed to investigate the quadrature methods by 
the help of methods using in solving of the problem 
(1). For the application of the quadrature formula to 
solve the equation (2) let us consider the following 
indefinite integral: 

0

0( ) ( ) , .
x

x

y x F s ds x x X     (3) 

Suppose that sufficiently smooth function ( )F x  is 

defined on the segment 0[ ]x X . To compute the 
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integral participated in (3) one can be used the 
following quadrature formula:  

0
0

( ) ( ),
lx l

i i
ix

F s ds h F x


    (4) 

here the node ( 0,1,..., )ix i n  are defined by the 

equality 0 ( 0,1,..., )ix x ih i n   . The positive 

h  is the step-size. If here supposed that n kl , 
then for the calculation of the value ( )y x  must be 
used the composite quadrature formula which is 
constructed by using the following equality:  

2

0

( 1)

( ) ( )

( ) ... ( ) ( ; ).

l

l

l l

xb

a a

x b

n

x k x

F s ds F s ds

F s ds F s ds a x b x


 

    

 

 
 

Quadrature formula, in this case, can be written as 
follows: 

0

1

0 0

( ) ( ) ( ).
nx k l

i jl i
j ix

y b F s ds h F x



 

            (5) 

It is known that if apply the finite-difference method 
to solve the problem (1), then receive: 

0 0

( 0,1,..., ),
l l

i m i i m i
i i

y h f m n l  
 

    (6) 

here ny is the approximate value for the function 

( )y x  at the mesh point nx ( 0)n  . If put lx x  in 

the equality (3), then receive 
0( ) ( )

lx

l

x

y x y F s ds   , 

so as 0 0y   In this case, from the equality (4) 

receive that: 

0
0

( ).
l

l i i
i

y y h F x


    

It is not difficult to prove that this equality in 
general form can be written as following:     

    ( 1) ( 1)
0

( ).
l

ml m l i m l i
i

y y h F x  


     (7) 

If take into account the equality ( ) ( )y x F x   in 
the equality (7), then receive non-homogeneous 
finite-difference equation with constant coefficients. 
It is known that the solution of the equation (7) can 
be written as the m m my y y  . Here my -the 

general solution of homogeneous and my  is the 

partial solution of non-homogeneous equation. It is 
evident that in the case 0h  receive that 0my  . 

Therefore the properties of the solution of equation 

(7) depends from the solution of my . As is known 

the general solution of the homogeneous equation 
can be written in the following form (see for 
example [11, p. 311-319]): 

1 1 2 2 ... .m m m
m l ly C C C       

Here ( 1, 2,..., )i i l   are the roots of the 

following equation: 

1 0.l    
All roots of this equation differ from each other and 
satisfy the condition 1 ( 1, 2,..., )i i l   . These 

roots in general form can be written as the 
following: 

(cos sin ) ( 1, 2,..., )i i i l      , 

here   is the module of the roots ( 1, 2,..., )i i l  . 

And now let us consider the determination of the 
behavior of the solution of the non-homogeneous 
finite-difference equation (6). It is clear, that the 
properties of the equation (6) depend on the 
properties of the general solution of the 
corresponding homogeneous equation which has 
been investigated by many authors (see [12], [13, p. 
82-89], [14, p. 205-226], [15, p. 379-394],[16]).And 
have been proved that if the method (6) is stable 
then the solution of the corresponding non-
homogeneous equation will be bounded. For the 
comparison of the solution of the finite-difference 
equation (6) and (7), let us remember the definition 
of the conception of stability which can be given as 
the following: 
Definition 1. The method (6) is stable if all roots of 
the following polynomial: 

  1
1 1 0...l l

k k        
      

lie in the unit circle on the boundary of which there 
are no multiply root (see [3]-[7]) 
Note that the method (4) and its generalization 
method (5) satisfy the condition of stability. But in 
the class of method (6) there are some stable 
methods which are not include in the class of 
methods of the type (5). Among of them there are 
methods which have higher degrees than the method 
of the type (4). The next section is dedicated to 
prove this expression. 
 
3 The determination of the maximal order 
of accuracy for the method (7) 
 
To define the maximal value of order of accuracy let 
us consider the following conception of the degree. 
Definition 2. The integer value p  is called as the 
order for the method (7), if the following is hold: 
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1

0

( ) ( )

( ) ( ), 0.
l

p
i

i

y x lh y x

h y x ih O h h 



  

   
  (8) 

By choosing of the coefficients of ( 0,1,..., )i i l   

one can be define the maximal value for the degree 
p . For this aim, let us use the following Taylor 

series: 

  

2
( ) 1

2 1
( ) 1

( ) ( ) ( )

( ) ( )
( ) ... ( ) ( ),

2! !

( ) ( ) ( )

( ) ( )
( ) ... ( ) ( ).

2! ( 1)!

p
p p

p
p p

y x lh y x lhy x

lh lh
y x y x O h

p

y x ih y x ihy x

ih ih
y x y x O h

p






   

   

     

   


(9) 

By taking into account the equalities (9) in the 
asymptotic equality (8), receive: 

   
2

2

0 0

( ) ( )
2!

l l

i i
i i

l
hy x l h y x i 

 

        
   

 
           (10) 

1
( ) 1

0

... ( ) ( ),
! ( 1)!

0.

p pl
p p p

i
i

l i
h y x O h

p p

h








 
     





As is known the system 21, , ,..., px x x (or the system 
( ) ( )( ), ( ),..., ( ) ( ( ) 0; 0,1,..., )p jy x y x y x y x i p    ) 

is independed. Therefore from the equality (10) 
receive, that the following must be hold: 

2

0 0

1

0

; ; ...;
2!

.
( 1)! !

l l

i i
i i

p pl

i
i

l
l i

i l

p p

 



 





 




 


          (11) 

Thus, to define the values of the degree p  receive 
non-homogeneous system of algebraic equations. 
Amount of the equations equals to p , but amount 

of unknowns equals to 1k  . It is not difficult to 
prove that the system (11) has the unique solution 
for the case 1p l   and has the solution which is 

more than 1 (one), in the case p l .And by 
Dahlquist`s result receive that if the method (6) is 
stable then there are stable methods with the degree 

max 2[ / 2] 2p l   for the each value of l . The 

method (7) is more simple than the method (6). For 
the investigation of the method (7) let us write that 
in the following form: 

0

.
l

n l n i n i
i

y y h y 


     (12) 

This presentation of the method (7) is the same with 
the presentation of the method (6). Let us apply this 
method to solving of the following problem: 

( ) ( ), (0) 1, 0 .y x y x y x X       (13) 
In this case, receive the next finite-difference 
equation: 

1 1 1 1

0

(1 ) ( ... )

(1 ) 0
l n l l n l n

n

h t y ht y y

ht y

  


        
  

. (14) 

If 0   then receive that 
0,n l ny y    

the solution for which can be written as: 
      1 1 2 2 ... ,m m m

m l ly C C C        (15) 

( 1,2,..., )j j l   are the roots of the polynomial 

  1l    . Note that all roots are distinct. In 

this case, the roots ( 0,1,.., 1)m
j j l    can be 

defined in the following form: 

2 2

2 2
cos sin ,

1 1

2 2
cos sin .

1 1

m m
j

jm jm
r i

l l

j j
r

l l

 

 

     

 
 

 

From here receive that the module of these roots 

equal to one, that is 1 ( 1, 2,..., )j j l   , so as 

1r  . The coefficients ( 1, 2,..., )iC j l  can be 

defined by the help of the initial-value 
)1,...,1,0(  ljy j . If the initial-values are 

bounded, that is ( 0,1,..., 1)jy M j l   , then 

receive that the solution of (15) is also bounded. 
Note that in this case when i  is complex, then 

receive that 1i   is also complex and is conjugate to 

complex value i . Therefore the corresponding 

constants iC  and 1iC   will also self-conjugate 

complex numbers. It is not difficult to prove that, if 

i i iC a ib  , then 1 1 1i i iC a ib    . In this case, 

receive that: 

 
  

1 1 1cos sin ,

cos sin .

m m m
l l l l i i

i

C C a ms a ms r

r t i t

 


    

 
 

It follows that 1 1
m m

l l l lC C    is bounded, it is to 

say that 1 1
m m

l l l lC C C    , so that 1r  . 

It is evident that the equation (14) for fixed step-size 
h  will be finite-difference equation with constant 
coefficients. Therefore the solution of the equation 
(14) which is denoted by my  can be presented as 

the following form: 
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2 2 ... .m m m
m l l l ly C C C       

here l - are the roots of the polynomial: 

 1
1 1

0

...
(1 )

1
0.

(1 )

l l
l

l

l

ht

ht

ht

ht

    






   




 



  (16) 

Let us consider the following series: 

 0

2 3 2
0 0

(1 ) / (1 )

1 ( ) ( ) ( ) ( ) ...

l

l l l l l

ht ht

ht ht ht

 

      

  

      
 (17) 

As is known if the method (12) has the degree 
p k then the coefficient l  satisfies to the 

condition as 0l  .In this case the constant term in 

the expression (16) can be written as (17). And now 
let us presuppose that the size l  is even. Then 
receive that one of the roots of the polynomial 

  1l     equal to -1 (minus one). For the 

investigation of this case let us put 2l  . If in this 

case take 0t  , then receive that one of the roots of 
the equation (16) can be presented as: 

2

2

( )
( ) 1 ... exp( ( )).

2

th
h th th O th           

From here receive that 

2 2 2 ( 1) exp( ( ))m mC C mth O th     

(see [4, p. 379-384]). And in this case other root can 
be defined by the formula: 

2

1

( )
( ) 1 ... exp( (1 ( ))).

2

th
h th th O h           

From here receive that  1( ) exp( ( ))
m

h mth O h     

which corresponds to the exact solution of the 
problem (13). If the size of l  is odd in this case one 

of roots for the polynomial     will equal to one   

( 1 1  ) and the others will be complex numbers, 

the module for which equals to 1 (one). Thus 
receive that method (12) is stable and has the degree 

1p l  . It follows that the method (12) is 
convergent. It is known that if the method is 
convergent then its coefficients must to satisfy the 
following conditions (see [5],[6]): 
A. The coefficients ( 0,1,..., )i i l   are some real 

numbers. 

B. The roots of the polynomial  
0

l
i

i
i

   


   

are differ from the roots of polynomial 

  1l    . 

C.  1 0   and 1p  . It follows from the 

condition B, that the conditions  1 0   will be 

satisfied always.  
And verification of the necessity of conditions of 
convergence for the method (12) is very easy. 
Because  1 1 1 0l    . 

Suppose that coefficients of the method (12) 
satisfies to the conditions A, B and C. Then the rate 
of convergence of the method (12) can be 
established by the following theorem: 
Theorem. Let the method has the degree p  . Then 
the following estimation for its errors will be hold: 

 1
0

( ) max ( ) ,

0,

p
m i i

i l
y x y C y x y M h

h
 

   


 (18) 

here 0x x mh  -fixed point. 

The similar theorems have been proved by some 
authors (see [4, p. 385], [5],[6]). By the 
investigation of the linear system of algebraic 
equations (11), receive that in the class of methods 
of the type (12) there are methods with the degree 

2p l   for the even l . For example, in the case 

2l  , from the method (12) it follows the Simpson 
method. Thus receive that in the class of methods 
(12) there are exist methods with the degree 

1p l   if l  is odd and exist methods with the 

degree 2p l   if l  is even.  
For the illustration of the received here results let us 
consider the application of the methods of the type 
(12) to computation of some definite integrals. 
 
4 Application of some concrete 
methods to computing of the model of 
definite integral  
Let us note that the maximal degree for the method 
(6) equals to 2l . But the method (12) always has 
the degree 2[ / 2] 2p l   and if 2p l  , then 

1    will roots for the characteristic polynomial 
of the method (12). It follows note that the region of 
the stability for the stable methods of the type (6) 
are wide than the region of stability for the method 
of type (12). For example, the boundary of the 
region of stability for the Simpson method equals to 
zero. But in the class of methods (6) there are 
methods which are freed from this disadvantage.   
It is known that in solving many scientific and 
engineering problems arise necessity to construct 
more exact methods for calculation of definite 
integrals.  
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For this aim, one can be used the Lableotto, 
Chebyshev, Gauss and etc. methods. Note that the 
coefficients of these methods are fixed. Note that 
the coefficients of these methods are fixed. 
Therefore it is impossible to construct the methods 
of above-mentioned type with the new properties by 
choosing the coefficients. However by using the 
methods of the type (6) one can be constructed 
methods with new properties by choosing some 
coefficients. For example, to calculate the definite 
integrals by using the problem (1) one can be used 
the following multistep hybrid method:  

0 0 0

( 1; 0,1,..., ),

i

l l l

i n i i n i i n i
i i i

i

y h f h f

i l

  



   
  

 

 

  
 (19) 

Let us note that in the class of methods of the type 
(19) there are stable methods with the degree 

3 3p k  . One can be received the Gauss method 

from the (19) in the case 0 ( 0,1,..., )i i l   . It 

follows from here that the method (19) is more 
general than the multistep methods with constant 
coefficients or the Gauss methods. These methods 
were call as hybrid methods and have investigated 
by authors (see for example [7]-[10], [17]-[24]). 
And now let us consider the computation of the 
following definite integral: 

1

0

exp( )Id s ds    

the exact value for which equals to exp( ) 1  . 
For computing of the values of above given integral 
let us use the following methods having the different 
properties:  

3 2 1

3 2 1

( ) / 3

(13 39 15 5 ) / 36,
i i i i

i i i i

y y y y

h y y y y
  

  

   
      

  (20) 

3 2 3 2 1(9 19 5 ) / 24,i i i i i iy y h y y y y             (21) 

3 1 3 2 1( 4 ) / 3,i i i i iy y h y y y            (22) 

3 3 2 13 ( 3 3 ) / 8.i i i i i iy y h y y y y            (23) 

All methods are stable and have the degree 4p  . 
Let us compare these methods. The methods (22) 
and (23) are quadrature formulas, but methods (20) 
and (21) aren’t include in the class of quadrature 
formulas. All methods can be applied to solving of 
the problem (1). In the construction of Simpson 

method (formula (22)) has used three node points 
but in the construction of other methods have used 
four node points. If solve non-homogeneous finite-
difference equations (20)-(23), then receive: 

1 1 1( cos( ) sin( ))3 ( )m
m i iy C a ms a ms h

    for 

the method (20), 

1 2 ( )my C h  for the method (21), 

1 2 3( 1) ( )m
my C C h    for the method (22), 

1 1 4( cos( ) sin( )) ( )m i iy C a ms a ms h    for 

the method (23). 
The functions ( ) ( 1, 2,3, 4)j h j  are the partial 

solution for the corresponding non-homogeneous 
equations. By the comparison of the linear part of 
proposed method one can say that the method (21) 
is better than others. By solving of model problem 
of type (1) will show that in reality this conclusion 
can be incorrect. In order to give more wide 
information about increasing of errors for each 
above-described methods here by decided tabulated 
the results receiving in solving of initial-value 
problem for indefinite integral corresponding to 
example. And also here decided to apply one of 
simple hybrid methods for solving of this problem. 
For the comparison of the results receiving in the 
computation of given example it is sufficient to take 
into account the last value tabulated in the presented 
tables. 
Let us note that the hybrid methods are more exact 
than the methods of type (6). For the demonstration 
of advantages of hybrid methods let us apply the 
following hybrid method to compute the given 
example which has the degree 4p  : 

1 1/2 3/6 1/2 3/6
( ).i i i i

y y h y y    
     

The results are tabulated in the following tables: 
 
Table 1. The errors of the methods (20) with 

1, 0,1m h   

 

 

Table 2. The errors of the methods (20) with 
1, 0,1m h    

ix  The 
errors of 
the 
methods 
(20) 

The 
errors of 
the 
methods 
(21) 

The 
errors of 
the 
methods 
(22) 

The 
errors of 
the 
methods 
(23) 

The errors of 
the methods 
(24) 

0.3 2.95E-7 3.13E-7 1.35E-7 4.36E-7 2.97E-9 
0.7 1.06E-6 1.93E-6 5.04E-7 1.13E-6 1.83E-8 
1.1 2.27E-6 4.34E-6 1.05E-6 2.22E-6 4.12E-8 
1.5 4.08E-6 7.95E-6 1.87E-6 4.34E-6 7.54E-8 
2.0 7.64E-6 1.50E-5 3.42E-6 7.69E-6 1.42E-7 
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Ta
ble 3. The errors of the methods (20) with 

01,0,1  hm  

 

 

 
 

Table 4. The errors of the methods (20) with 
01,0,1  hm   

 

 

 

 

Table 5. The errors of the methods (20) with 
1,0,10  hm  

 

 

 

 

Table 6. The errors of the methods (20) with 
1,0,15  hm  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

 

 

Table 7. The errors of the methods (20) with 
01,0,15  hm  

ix  The 
errors of 

the 
methods 

(20) 

The 
errors of 

the 
methods 

(21) 

The 
errors of 

the 
methods 

(22) 

The 
errors of 

the 
methods 

(23) 

The errors 
of the 

methods 
(24) 

0.3 2.12E-7 2.22E-7 9.10E-8 3.23E-7 1.80E-9 
0.7 4.82E-7 9.20E-7 2.26E-7 5.09E-7 7.45E-9 
1.1 6.92E-7 1.38E-6 3.17E-7 6.05E-7 1.12E-8 
1.5 8.31E-7 1.70E-6 3.78E-7 9.68E-7 1.37E-8 
2.0 9.43E-7 1.95E-6 3.79E-7 8.52E-7 1.58E-8 

ix  
The 
errors of 
the 
methods 
(20) 

The 
errors of 
the 
methods 
(21) 

The 
errors of 
the 
methods 
(22) 

The 
errors of 
the 
methods 
(23) 

The errors of 
the methods 
(24) 

0.3 4.19E-11 8.63E-11 1.83E-11 4.37E-11 7.62E-13 
0.7 1.24E-10 2.60E-10 5.51E-11 1.25E-10 2.30E-12 
1.1 2.48E-10 5.19E-10 1.10E-10 2.47E-10 4.59E-12 
1.5 4.32E-10 9.06E-10 1.92E-10 4.35E-10 8.01E-12 
2.0 7.95E-10 1.66E-9 3.53E-10 7.96E-10 1.47E-11 

ix  
The 
errors of 
the 
methods 
(20) 

The 
errors of 
the 
methods 
(21) 

The 
errors of 
the 
methods 
(22) 

The 
errors of 
the 
methods 
(23) 

The errors of 
the methods 
(24) 

0.3 3.08E-11 6.36E-11 1.32E-11 3.23E-11 5.54E-13 
0.7 6.13E-11 1.28E-10 2.68E-11 6.16E-11 1.11E-12 
1.1 8.18E-11 1.72E-10 3.59E-11 8.09E-11 1.49E-12 
1.5 9.56E-11 2.01E-10 4.20E-11 9.71E-11 1.75E-12 
2.0 1.06E-10 2.24E-10 4.69E-11 1.05E-10 1.95E-12 

ix  
The 
errors of 
the 
methods 
(20) 

The 
errors of 
the 
methods 
(21) 

The 
errors of 
the 
methods 
(22) 

The 
errors of 
the 
methods 
(23) 

The errors of 
the methods 
(24) 

0.3 5.47 E-3 5.28 E-3 1.57 E-3 9.57 E-3 1.91E-5 
0.7 4.21 E-3 8.30E-3 1.81E-3 3.69E-3 3.01E-5 
1.1 4.33 E-3 8.36 E-3 1.82E-3 1.36E-3 3.03E-5 
1.5 4.33 E-3 8.36E-3 1.82E-3 1.00E-2 3.03E-5 
2.0 4.33E-3 8.36E-3 6.70 E-4 1.36E-3 3.03E-5 

 

ix  

The errors of 
the methods 
(20) 

The errors of 
the methods 
(21) 

The errors of 
the methods 
(22) 

The 
errors of 
the 
methods 
(23) 

The errors of 
the methods 
(24) 

0.3 2.15 E-2 1.94E-2 4.67E-3 4.04E-2 4.22E-5 
0.7 1.32E-2 2.50E-2 4.91 E-3 9.11E-3 5.43E-5 
1.1 1.38 E-2 2.50E-2 4.91 E-3 2.03E-3 5.44E-5 
1.5 1.38E-2  2.50E-2 4.91E-3 4.08E-2 5.44E-5 
2.0 1.38E-2 2.50E-2 1.09E-3 2.03E-3 5.44E-5  
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5 Conclusion 
Here was investigated the composite (generalized) 
quadrature formula, have demonstrated the 
advantages and disadvantages of these formulas. 
The quadrature formulas were compared and by this 
define the basic properties of these formulas. Here 
has determined the direct relation between 
composite quadrature formulas and the multistep 
methods with the constant coefficients.  By 
illustration of advantages of the multistep methods 
have recommended applying them to the 
computation of definite integrals. And have proved 
that the methods proposed here are more exact than 
the quadrature methods. Defined disadvantages of 
the quadrature formulas with the maximal order of 
accuracy, has given the way for correction of that. 
By using the best properties of the hybrid, methods 
here have recommended application of the hybrid 
methods to compute definite simple integrals. And 
have described the advantages of the application of 
hybrid methods to computation of definite integrals, 
which have reduced to solve the initial-value 
problem for ODE. Some information on computing 
of definite integrals by using the solution of the 
initial-value problem for ODE can be found in the 
works [25]-[29]. 
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